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Abstract
In this talk I give a brief introduction to
generalized Lagrange multipliers and then apply
them to elucidate the idea of the proof of
Pontrjagin’s Maximum Principle.



Outline

Optimal Control: The bang-bang principle

Constrained Optimization: The usual elementary version
Constrained Optimization: Dubovickii-Miljutin Theory
Pontrjagin’s Maximum Principle: proof via DM theory

Example: Classical Mechanics

References



Optimal Control: The
bang-bang principle

Suppose that we are driving a one dimensional vehicle ...

P1.1: Path a <z <}

P1.2: Contraints ||z|| <1

P1.3: Initial Conditions z(0) =a , 2(0) =0
P1.4: Final Condition = b

P1.5: Input the acceleration , ©

P1.6: Objective minimize time taken to go from a to b

Then ...



Theorem. [Bang-Bang Principle] The solution of P1 is
to accelerate at 1 for sqrt(4(b — a))/2 seconds and then
to accelerate at -1 for sqrt(4(b — a))/2 seconds.

(Therefore implying that the optimal input or control is
discontinuous!)

A picture ...

Velocity

.ol _____Acceleration=1

___-—---- Accedleration = -1

Area=
Distance travelled

T Time

Curve lies in trianglular region ... (intermediate value
theorem)



Constrained Optimization: The
Usual Elementary Case

Typical approach to constrained optimization as seen in a
first course in calculus, is to use Lagrange multipliers.

P2.1 Objective Maximize f(z),f: R" — R
P2.2 Constraint g(z) = 0,9: R" — R

Theorem. [Necessary Condition] For " to be a
solution of P2,

V(") =AVg(z")

for some \ € R.



Another Picture ...

Gradient of g ) A
1
1

Gradient of f

the normal vectors must colinear ... in fact if we have that
g < 0 as the constraint, then A > 0.



Constrained Optimization:
Dubovickii-Miljutin Theory

Suppose we modify the previous example to a bit more
general picture.

P3.1 Objective Maximize f(z),f: R" — R

P3.2 Constraints
Gi(z) <0,2=1,2,....m;G;: R" > R

P3.1’ Objective Minimize f(z) = —f(z),f: R" —» R
P3.2’ Constraints
Gi(z) <0,2=1,2,....m;G;: R" > R

Theorem. [Necessary Condition] For " to be a
solution of P3,

Vf(z*) = Z A VGi(z)

for some {\;}{* € RT".



Another picture,

Gradient of 9,

Gradient of f

Gradient of 9%

In this case we will have that Ay and A9 are both
nonnegative.

Comments

m < n Lagrange relation special
m = n Intersection typically one point

m > n Intersection special ... typically some constraints
not active



Cones and Dual Cones

Review ...

Vector Space

Hausdorff

Topological Vector Space
Seminorm

Locally convex spaces

Definition. [Cones and Dual Cones] 1) A subset K, of
a locally convex space X is a cone If, given that k € K
and X\ > O this implies \k € K. 2) K is the dual cone
to K, defined to be all the elements k of X* such that
k(k) > 0Vk € K.

For example the dual cone of a half space is a ray normal to
that half space. Here we have identified the space and it's
dual ...



If we look at a cone K (green) in R? and its dual cone K+
(red) in (R*)* we might have something like ...

Facts:

Convexity: Cones need not be convex ... dual cones
always are.

Duality K1 = coK when K # 0.
Minimum Values If f € X* and K # (), then
{inf f(k)|k € K} = 0iff f € K and
{inf f(k)|k € K} = —co iff f 3 K™.



Now we come to the three main results of this section.
Each one is really a special of the previous one.

Suppose that

Al: Ky, Kq,..., K,,11 are convex cones in a real LCS X
A2: Ky, Kq,..., K, are open and Ky # 0.

then,

Lemma. [Dubovickii-Miljutin]

n+1
K@ntEﬂKZZQC}fO_'_fl_'_—'_fn—l—l:O

1=0

where f; € K

., and f; are not all zero.

e Examples
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Idea of Proof [1, v.3,ch.48]:
(<)
® assume not ... and u € K¢

e wlo.g. fo(v) # 0 for some v.
o fo(u)+ Afo(v) > 0 forall A in a nbhd. of O.

® contradiction

e () .
(ﬂK) =K +Kf+..+ K
1=0

for m < n.

® there is an m < n such that

K=(\Ki#0 , KnNKnp =0
1=0

e K is open and can be separated from K, ... i.e.

f#0, € X*and f(Kmi1) < a < f(K), (a € R).
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Therefore, f € KT, —f € K:H_l.

Use (*) to get that f=fo+ fi+ ...+ fm , some
fo, f1, ey fm € (KJ’,K;’, ,K:,;) and set
frt1 = —Ff. Set fryo = fmiz = ... = fn = 0.
Done (almost)

idea of proof of (*) still needed.

(D) easy

(C) not so easy ... uses Krein extension theorem ...
Y =T[, X, it's diagonal L, and C =[], K.
(ITZo X)™ = TTiZo X7

f €Nty Ki)" , F defined via f on diagonal.
F>0onCNL... KEtheorem... FF' > 0onC.
F=fot+fH+...+fm , fi€e X"

fi€ K.

Donel
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Second result ... A little more familiar
statement!

(remember, we are heading towards constrained max/min
problems in Banach spaces!)

Problem: Minimize Fy(u) given,

e Inequality type constraints: u € N;, 3 = 1,...,n
e Equality type constraint: © € Ny41

Goal: Find necessary condition of the form

fo+fi+...+ frny1 =0, fiEKi—I_

For some as yet undefined dual cones derived from the
constraints.

Cones made up of:

e regular descent directions K
e admissable directions K; , 7 =1,...,n

e tangential directions K11
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Theorem 1. Given the assumptions,

e D(Fy) is a functional in neighborhood of ug

e Ny, Ny, ..., NN, are subsets of X with nonempty
interior, but N, 11 may have empty interior.

o Ko, Ky,...,K,11 are convex and Ky # ()
we have that

Necessary Condition /f ug is a local solution to the above
problem, there exists f;’s in the K j’ 's such that

fO"‘fl"‘---""fn—l—lZO

Nondegeneracy (), Ki # O = fi#0
Sufficient Condition The necessary condition is sufficient
to guarentee that ug is a global minimum if

o Fy: X — R is convex and continuous
® Niy,..., N,y are convex and there is a point h in
the interior of N1, ..., N, which is also in N, .
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Proof of Theorem 1:

. use the Lemma! ... and use some intuition for the
Nondegeneracy and Sufficient conditions.

(Theorem 1 is due to Dubovickii and Miljutin (1965) )
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Third result ... Constrained optimization
(infinite dim.)!

As preparation for the next theorem, we consider the

problem that will look most familiar to those aquainted

with constrained optimization.

Problem: Minimize Fy(wu) with the constraints given by

C1
C2
C3

Al

A2
A3

A4
A5

F;<0,5=1,....,.n—1

u € N,

Foii(u) =0

... Assuming that we have ...

Fo, ..., F,_1: X — R are F-differentiable
functionals.

N, is a convex subset of X with non-empty interior.

F,i1: X — Y is a continuously F'-differential
operator.

X and Y are real Banach spaces.

Regularity: The range R(F,/H_l(u)) is closed in Y.

Then we would like nec. and suf. conditions ...
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Theorem 2. [Generalized Kuhn-Tucker Theory] For
the above minimization problem we have the following
condition that is necessary for ug to be a local solution.

1=n—1

> AiDFi(uo)(u—uo)+(y", DFni1(uo)(u—uo)) > 0 Vu € N,
1=0

where

multipliers: A\; >0 ,y " €Y"

non-degeneracy condition: \;F;(uy) = 0

forr =0,....,n — 1,

If \o > 0 and Fy, ..., F,_1,{y", F,11(-)) are convex on
X, then the condition is sufficient for ug to be a global
solution to the minimum problem.

A Pause to Collect and Consider ...

® [heorem 2 “=" Theorem 1

® Theorem 2 permits us to work in functional spaces!!
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Another picture ...

normal to F1= 0

normal to FO: min _

Cone of admissable directionsfor N zat ug

. on to Pontrjagin's maximum principle.
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Pontrjagin’s Maximum
Principle: proof via DM theory

The maximum principle concerns itself with solutions to a
control problem that minimize some functional. For
example, one might want to minimize the time taken to
move from point A to point B under constrained controls.
This is what we considered in the bang-bang principle
above.

In the following we will focus on the statement of the
principle and a very brief overview of how the proof is
approached. The details will be completely glossed over
with a couple of exceptions. For the details, one should
consult [1, v.3,ch.48,p.422-33]. What | try to clarify is the
fact that we prove the PMP by pushing the problem into a
form permitting the application of Theorem 2 ... modulo
the introduction of a time scaling function ... and then get
the result via the introduction of adjoint states.
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Optimal Control Problem P:

Control Functional: J;tlz fly(@),w(t),t)dt = min!
Control Equations: y;(t) = gi(y(t), w(t), t)

Boundary conditions: h;(t3,y(t2)) =0

Control constraints: w(t) € Wl

..where: i =1,...,N; y;(t1) = as; f, g, and h; are C*

Comments:

e This covers a huge amount of ground ... note that we
obtain discontinuous vector fields through the
dependance upon the control w(t) which can be
discontinuous.

e we assume tq is fixed, but that ¢, is determined by the

solution.
Define:
N
H(ya w, p, ta >‘0) = Zpigi(ya w, t) — >‘0f(y7 w, t)
=1
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The Theorem ... at last!

Theorem 3. [Pontrjagin’s Maximum Principle] Given
that (y(t), w(t), t2) is a solution to P we have that,

e d)\g, a1, ...,an, not all zero and Ay > 0

e o functions p;(t), 1 = 1, ..., N, continuous on [t1, t3]

such that

H(y(t),w(t),p(t), L, >‘0) — J}I*la,X H(y(t)aw*ap(t)ata >‘0))

ew
and
pl:_Hyla yl:Hpia 7':17 7N
N
Oh; .
pi(t2) — = Z y-J (tzay(tZ))aj ’ 1 = 17 7N
j=1 ¢
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Idea of Proof:

e introduce t = v(7) to transform time t to 7 € [0,1].
e compute the derivatives

o NoF,(@)(u — @) + (v, Fy(@)(u — @) >0

e introduce adjoint coordinates ... (looks right now)

e switch back to time t.

e done

Next an example ... the Euler-Lagrange equation of
classical mechanics.
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Example: Classical Mechanics

foT L(z(t),u(t))dt = min!
#(t) = v(@(t), u(t)), on [0, T
T fixed

u(t) e U

Define H(z,u, p) = pv(x,u) — L(z,u) and we get

o p(t) = —Ho(z(t), u(t), p(t))

e p(T)=0

o H(z(t), u(t), p(t)) = maxuer H(z(t), u, p(t))
e ... whichis H,(z(t),u(t),p(t)) = O for smooth H.

SO, specializing to the case where v = uw and U = R, we
get

o u(t) = i(t)
o H =p(t)z(t) — L(x(t), (1))

o p(t) = Li(z(t), z(¢))

o p(t) = FLs(z(t), #(t) = Lo(x(t), 2(t))
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Summary

Outline reiterated:

Optimal Control: The bang-bang principle
Constrained Optimization: The usual elementary version
Constrained Optimization: Dubovickii-Miljutin Theory

Pontrjagin’s Maximum Principle: proof via DM theory

Example: Classical Mechanics

The moral of the story is that Pontrjagin’s Maximum
Principle boils down to a result about cones and dual cones
in Banach spaces ... that at optimal points the intersection
of admissable cones is empty and that this can be translated
into a generalized langrange multiplier sum of dual vectors
that is non-negative in some cases and identically zero in
others. (admissable cones = cones of admissible directions)

Reiteration of key result ...
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Key Result:

Suppose that

Al: Ky, Kq,..., K, are convex cones in a real LCS X
A2: Ky, Kq,..., K, are open and Ky # 0.
then,

Lemma. [Dubovickii-Miljutin]

n+1
Ky =[Ki=0<= fo+ fi+ .+ far1 =0

1=0

where f; € K

., and f; are not all zero.
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